





# Inter-calibration and validation of observations from ATMS and SAPHIR microwave sounders

Isaac Moradi ESSIC/CICS-MD, University of Maryland

Ralph Ferraro, STAR/NESDIS, NOAA
Patrick Eriksson, Chalmers University of Technology, Sweden

NASA Sounder Science Team Meeting
September 30, 2014 - October 2, 2014
Greenbelt Marriott Hotel, Greenbelt, Maryland

#### **Outline**



- Radiometric and Geometric Errors
- ATMS and SAPHIR instruments
- Inter-calibrating SAPHIR and ATMS
- Validating SAPHIR and ATMS observations using radiosonde data
- Validating ATMS temperature sounding channels using GPS-RO profiles
- Geolocation Errors
- Conclusion

#### Radiometric and Geometric Errors



#### □ Radiometric Errors

- Change in Antenna Reflectivity and Emissivity
- > Imperfect Electronics: APC, Oscillators, Amplifiers, ...
- Radio Frequency Interference (RFI)
- **➤ Uncertainty in Warm Load Temperature**
- Non-linearity in the Calibration
- Pre- and Post-processing Errors

#### **☐** Geometric Errors

- Antenna and/or Feedhorn Misalignment
- > Satellite Attitude Offset
- Satellite Clock Offset and Timing Error
- > Error in Ephemeris Data
- Anomaly in Scan-drive Motor
- Error in Sensor Modelling

### A Simple Case: Antenna Pattern





Reciprocity = receive and transmit properties of an antenna are identical



# Megha-Tropiques





- ☐ A microwave imager (MADRAS) to study precipitation and cloud properties (SSM/I type, with an additional channel at 157 GHz).
- ☐ A microwave sounding instrument for the atmospheric water vapor (SAPHIR 6 channels in the 183 GHz band).
- ☐ A radiometer for measuring outgoing radiative fluxes at the top of the atmosphere (ScaRaB).



# Inter-calibrating SAPHIR and ATMS

#### SAPHIR vs. ATMS







| ATMS          | SAPHIR        | Bias (Obs) | Bias (Sim) | Obs - Sim |
|---------------|---------------|------------|------------|-----------|
| $183\pm7.0$   | $183 \pm 6.8$ | -0.68      | -0.42      | -0.26     |
| $183 \pm 4.5$ | $183 \pm 4.2$ | -1.56      | -0.91      | -0.65     |
| $183 \pm 3.0$ | $183 \pm 2.8$ | -1.23      | -0.93      | -0.30     |
| $183 \pm 1.0$ | $183 \pm 1.1$ | +0.42      | +0.90      | -0.48     |

#### SAPHIR vs. ATMS







# Validating using radiosonde data

# **ATMS Weighting Functions**





#### Cloud and PWV Filters





aryland

# Validating Using ARM Data





### **Error in IGRA humidity profiles**







# Validating using GPS-RO data

# **ATMS Weighting Functions**





#### **GPS Radio Occultation Data**



- □Radio signals transmitted by Global Positioning System (GPS) satellites are received by a receiver on a LEO satellite
- ☐ Temperature and water vapor profiles are derived from bending angles using a-priori profiles and inversion techniques
- □Raw GPS-RO data (time delay) have very high accuracy in the upper troposphere and lower stratosphere (500 hPa to 40 km) but different
- □errors and uncertainties are introduced during inversion to the atmospheric state variables



# **Drift in GPS Profiles**





From 400 hPa to 100 hPa

From ground To 400 hPa

#### ATMS vs. GPS RO









#### **Geolocation Error**

# Characterization: Asc - Des







# Effect of Geo Error on Obs





**ATMS Chan 3: Geolocation Error** 

Effect of 15-km along-track error on Channel 18

150

Tb Orig [K]

Effect of 15-km along-track error on Channel 18



Effect of 15-km along-track error on Channel 15

### Conclusions



- SAPHIR and ATMS observations show very good consistency
- > SAPHIR provides a great opportunity for inter-calibrating MW WV channels on POES satellites or to transfer the calibration among the POES satellites
- There is still a lack of reference datasets for validating MW satellite observations
- Radiosonde data can only be used to evaluate the overall bias in the WV channels and cannot precisely detect the magnitude of the bias
- GPS-RO data provide a good opportunity for validating observations from upper troposphere and lower stratosphere but the difference between GPS-RO and satellite observations cannot be translated as absolute bias in the satellite data
- The window channels cannot still be validated because of uncertainty in the surface emissivity
- > The accuracy of geolocation data is very important for many of the MW channels including surface sensitive, water vapor and stratospheric channels



# ARM Stations





Moradi et al., JGR, 2010, DOI: 10.1029/2010JD013962

# ATMS (AMSU+MHS)



- ☐ ATMS: Advanced Technology Microwave Sounder
- ☐ 22 channels, almost all AMSU-A and MHS plus a few additional channels



#### SAPHIR/ATMS WF





#### **SAPHIR Specifications**



#### Megha-Tropiques Orbital Characteristics © CNES

| Orbit    | Altitude | Inclination | Period     | #rev/day |
|----------|----------|-------------|------------|----------|
| Circular | 867 km   | 20°         | 102.16 min | 14       |

#### Saphir Channels

| Channel<br>N°. | Central<br>frequencies<br>(GHz) | Bandwidth<br>(MHz) | radiometric<br>sensitivity<br>(estimated<br>by<br>calculation) | polarisation |
|----------------|---------------------------------|--------------------|----------------------------------------------------------------|--------------|
| S1             | $183,31 \pm 0.20$               | 200                | 1,82 K                                                         | H            |
| S2             | 183,31 ± 1.10                   | 350                | 1,01 K                                                         | н            |
| \$3            | 183,31 ± 2.70                   | 500                | 0,93 K                                                         | H            |
| S4             | 183,31 ± 4.00                   | 700                | 0,88 K                                                         | H            |
| S5             | 183,31 ± 6.60                   | 1200               | 0,81 K                                                         | н            |
| S6             | 183,31 ±11.00                   | 2000               | 0,73 K                                                         | H            |

#### Saphir Instrument Characteristics

| Pixel interval /y (nadir)            | 10    | km  |
|--------------------------------------|-------|-----|
| Earth pixel Number of pixels (Earth) | 128   | 23  |
| Incidence angle (ground)             | <50   | deg |
| Swath                                | 1661  | km  |
| Extreme pixel size /x                | 21.96 | km  |
| Extreme pixel size /y                | 14.29 | km  |
| Average pixel size /x                | 13.3  | km  |
| Average pixel size /y                | 11.3  | km  |
| Average pixel size                   | 12.3  | km  |
| Scan interval (/x)                   | 10    | km  |
| Rotation period                      | 1.639 | s   |
| Rotation frequency                   | 0.61  | Hz  |